APPENDIX 2: MATHEMATICAL
FOUNDATIONS OF LINEAR ELASTIC
FRACTURE MECHANICS

(Selected Results)

A2.1 PLANE ELASTICITY

This section catalogs the governing equations from which linear fracture mechanics is de-
rived. The reader is encouraged to review the basis of these relationships by consulting
one of the many textbooks on elasticity theory.3

The equations that follow are simplifications of more general relationships in elas-
ticity and are subject to the following restrictions:

*  Two-dimensional stress state (plane stress or plane strain).

e Isotropic material.

*  Quasistatic, isothermal deformation.

*  Body forces are absent from the problem. (In problems where body forces are
present, a solution can first be obtained in the absence of body forces, and then
modified by superimposing the body forces.)

Imposing these restrictions simplifies crack problems considerably, and permits closed-
form solutions in many cases.

The governing equations of plane elasticity are given below for rectangular Cartesian

coordinates. Section A2.1.2 lists the same relationships in terms of polar coordinates.

A2.1.1 Cartesian Coordinates

Strain-displacement relationships:

du auy 1({ou. Ou
Exx =a—xx8yy = 'ggxy =5(a_;:-+a—xy) (A2.1)

Where x and y are the horizontal and vertical coordinates, respectively, &y, Eyy, etc. are
the strain components, and u, and uy are the displacement components.

?Appendix 2 is intended only for more advanced readers, who have at least taken one graduate-level course
1n the theory of elasticity.
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Stress-strain relationships: ,
. V2(0ux + 0y ) =0 (A2.5)
1. Plane strain. where
2 2
o= __’E——-——[(l—' V)gxx + vg)')’] V2 - a + a
=T 1+ v)(1-2V) anZ 2
O, = 1+ v)(1— 2V) k For a two-dimensional continuous elastic medium, there exists a function D(x,y)
; from which the stresses can be derived:
(A2.2) .;-v:‘
T =2UE, =&y : d’o 3*d o’d
x 1+v Oxx =<5 Oy == Tay == (A2.6)
ady ox 0xdy

O-u = V(O-XX + Gy),) s 3 .
where @ is the Airy stress function. The equilibrium and compatibility equations are au-

1., =0 tomatically satisfied if @ has the following property:

gzzzgxz =8yZ=sz= yz

respectively, E is Young’s a4¢ ‘D RR)

rmal and shear stress components,

d 7 are the no ottt Tt o2 + =0
\::)Zf:hg a; is the shear modulus, and "V is Poisson’s ratio ox 4 ox 2ay2 ay 4
or
2. Plane stress. ViV2ie =0 (A2.7)
7= E (€, + VE,] A2.1.2  Polar Coordinates
Strain-displacement relationships:
E
_ [€.. + VEL]
G.\T — V2 2 oA/ au, & _E!_ laug e _l lau, + aug u_g (A2.8)
. - Y 7 2(r o8 " or ‘
T ‘____2“84“,:———-8)0. (A23)
B 14V

Where u,and ug are the radial and tangential displacement components, respectively.

The stress-strain relationships in polar coordinates can be obtained by substituting r

-V .
= (e +£)
- and 6 for x and y in Eqs. (A2.2) and (A2.3). For example, the radial stress is given by

€u

O'zz=£xz=8yZ=sz=TyZ=0 . | |
0'" = -V £rr + VE A29a
- 1+ v)(1-2V) 6 (42.92)
Equilibrium equations:
for pl :
aO'yy & arxy =0 (A2.4) Plane strain, and

ox dy % *
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A2.9b)
o, = 2 -le, t+ VEge] (
m 1— v
for plane stress.
Equilibrium equations:
ao'rr + _1_a'rr9 2 O, — 000 =0
or r 006 r o)
19099 , 976 , 276
r a6 or r
Compatibility equation:
(A2.11)
VZ-(O',-,- + 0'99) =0
where : 82 . 1 az
- 4 ——t+—F—
v ort ror 2 96°
Airy str nction:
A2.12
V2Vv2@ =0 (A2.12)
where @ = ®(r,0) and
2
82(1) 10°@ +—l_i(?_ (A2.13)

1 P _1__8_(1_) Opp =—7 T =".5,90 1% 00
O-rrz—r—i-g-é—z—'f' o 60 ar2 rarae r

A2.2 CRACK GROWTH INSTABILITY ANALYSIS
of a cracked structure with finite

ically illustrates the general case o o splacement, AT o

Figure 2.12 schematCM. The structure is held at a fixe

system compliance,

where the 1oad .e i ntiat.lng Eq'
(A2.14) glves

da+ (B_A) dP+ CydP =0 (A2.15)
P oP a
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assuming A depends only on load and crack length. We can make this same assumption
about the energy release rate:

dg=(a—g) da+(a—g) dP (A2.16)
aa P aP a
Dividing both sides of Eq. (A2.16) by da and fixing A yields
@), @, e
da)a, \da)p \OP),\da)y,
which, upon substitutior; of Eq. (A2.15), leads to
-1
(&), -GBS e
da)y, \da)p \OP),\da)p oP),

A virtually identical expression for the J integral (Eq. 3.52) can be derived by assuming J

depends only on P and g, and expanding dJ into its partial derivatives.
Under dead-loading conditions, Cps = oo, and all but the first term in Eq. (A2.18)
vanish. Conversely, Cps = 0 corresponds to an infinitely stiff system, and Eq. (A2.18)

reduces to the pure displacement control case.

A2.3 CRACK TIP STRESS ANALYSIS

A variety of techniques are available for analyzing stresses in cracked bodies. This section
focuses on two early approaches developed by Williams [11,35] and Westergaard [8].
These two analyses are complementary; the Williams approach considers the local crack
tip fields under generalized in-plane loading, while Westergaard provided a means for con-
necting the local fields to global boundary conditions in certain configurations.

Space limitations preclude listing every minute step in each derivation. Moreover,
stress, strain, and displacement distributions are not derived for all modes of loading. The
derivations that follow serve as illustrative examples. The reader who is interested in fur-
ther details should consult the original references.

A23.1 Generalized In-Plane Loading

Williams [11,35] was the first to demonstrate the universal nature of the 1/ \r singular-
ity for elastic crack problems, although Inglis [1], Westergaard [8] and Sneddon [10] had
e.arlier obtained this result in specific configurations. Williams actually began by con-
Sidering stresses at the corner of a plate with various boundary conditions and included an-
gles; a crack is a special case where the included angle of the plate corner is 27 and the
surfaces are traction free (Fig. A2.1).
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illi followin
For the configuration shown in Fig. A2.1(b), Williams postulated the fo g

stress function:

® = r* ¢ sin(A +1)8 ¥ +¢p cos(A +DOF
+cysin(A — 1)0*+cy cos(A —1)6*]
| 19
=r*e(6*%,1) | (A2.19)
4 are constants, and 0% is defined in Fig. A2.1(b). Invoking Eq.

¢», c3,and ¢ -
o 1 o for the stresses:

(A2.13) gives the following expressions

o =rF(+(A+ 1)F(6%)]

‘ 20
Gop =" A +DF(6%)] (A2.20)

T~ rl—l[—lF’(B*)]

to 0*. Williams also showed that Eq.

A In order for displacements to be fi-

If the crack faces are traction free,
he following boundary con-

rimes denote derivatives with respect
ments vary with r

A must be > 0. i the
2mr)=0, which implies t

where the p
(A2.19) implies that the displace
nite in all regions of the body,
0pg(0)= Oge(2M)= 7,(0)="Tro

ditions:

F(O)=F(27r)=F’(0)=F'(27r)=0 (A221)

(b) Special case of a sharp crack.

(a) Plate corner with included angle y.

Williams [35]. A crack is formed when Y= 2m

FIGURE A2.1 Plate corner configuration analyzed by
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Assuming the constants in Eq. (A2.19) are nonzero in the most general case, the bound-
ary conditions can only be satisfied when sin (224)=0. Thus

A=", wheren=1,2,3,...
2

There are an infinite number of A values that satisfy the boundary conditions; the most
general solution to a crack problem, therefore, is a polynomial of the form

N n
®= Z(r?‘F(e*,; ) (A2.22)
n=1

and the stresses are given by

1
. 1= M + é(rmﬂrq(e*,m)) (A2.23)

T

where I"is a function that depends on F and its derivatives. The order of the stress func-
tion polynomial, N, must be sufficient to model the stresses in all regions of the body.
When r— 0, the first term in Eq. (A2.23) approaches infinity, while the higher order
terms remain finite (when m = 0) or approach zero (for m > 0). Thus the higher order
terms are negligible close to the crack tip, and stress exhibits an 1/ \r singularity. Note
that this result was obtained without assuming a specific configuration; thus it can be
concluded that the inverse square-root singularity is universal for cracks in isotropic elas-
tic media.

Further evaluation of Egs. (A2.19) and (A2.20) with the appropriate boundary condi-
tions reveals the precise nature of the function I'. Recall that Eq. (A2.19) contains four,

as yet unspecified, constants; by applying Eq. (A2.21), it is possible to eliminate two of
these constants, resulting in

DO(r,0)=r""<c, [sin(2 - 1)9 #- B2 sin(2 + 1)9 *
2 n+2 2
+cy [cos(g - 1)6 ™ —cos(% + 1)0 *]} (A2.24)

for a given value of n. For crack problems it is more convenient to express the stress
function in terms of, 6, the angle from the symmetry plane (Fig. A2.1). Substituting 6=

6* - 7 into Eq. (A2.24) yields, after some algebra, the following stress function for the
first few values of n:

D(r,0) = r* [sl(— cos2 - lcos ﬁ) + tl(— sin 9_ sin ﬁ):}
2 3 2 2 2
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Re and Im denote real and imaginary parts of the function, respectively, and the

where
ations with respect to Z; ie.,

bars over Z represent integr

_ dZ dz
7 =— and ===
dz dz

Applying Eq. (A2.6) gives
c,.=Re Z-ylm zZ

o, = ReZ+ yImzl (A2.31)

'txy = —yRe A

f the stresses vanishes when y=0. In addition, the shear

Note that the imaginary part 0
lying that the crack plane is a principal plane. Thus the

stress vanishes when y = 0, imp
stresses are symmetric about 0= 0 and Eq. (A2.31) implies Mode I loading.

The Westergaard stress function, in its original form, is suitable for solving a lim-
ited range of Mode I crack problems. Subsequent modifications [36-39] generalized the
‘Westergaard approach to be applicable to a wider range of cracked configurations.

Consider a through crack in an infinite plate subject to biaxial remote tension (Fig.
A2.2). If the origin is defined at the center of the crack, the Westergaard stress function is

given by

FIGURE A2.2 Through-thickness
crack in an infinite plate loaded in biax-
ial tension.
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Z( Z) i _2L
> (A2.32)

Z —a

Wh O 18 the remote tress a]ld a 18 tlle lla 1 cra k (S (S € ] . 2
ere 1 S S

for lx| > | @ <X<a,Zis pure imagi
al. a Zis ; :
The normal stresses on the crack plane are givEUr;« imaginary, while Z is real
n by

ox

22 (A2.33)

Let us i i
now consider the horizontal distance from each

becomes crack tip, x* = x-g; Eq. (A2.33)

_ oa
Gxx - O-yy = '\/_2_;
X (A2.34)

for x* << a. Th
. Thus the Wester.
gaard approach leads to the expected inverse squar
€-root sin-

gularity. One advanta i
ge of this analysis i ;
stress and crack si ysis is that it relates the local
ze. From Eq. (A2.28), the stresses on the cracli psltafﬁzs(e ;—t(()))the ko
=0) are given

by
Orr = 0gg = Oxx = Oy, = L
N (A2.35)

Comparing Egs. (A2.34) and (A2.35) gives

K;=0+na
(A2.36)

fOI the COnﬁg t1 g. 2 2 N te t t V IS 1 li(l. AZ_’;() l)e(:a]l [+ was
I L ha T appea S 1n

Cligulally dEﬁHEd il t g)
.
SS 1n-

£

1 f p mn g. A .2.

Substitutin
g Eq. (A3.36) int
estergaard stress function in torms :f}?[q- (A2.32) results in an expression of the

Ky
N2z * (A2.37)

z-a. It is possible to solv
! e fort i
ng substitution in Eq. (A2.37)f hesin

Z(Z*) =

Where 7% —

the f, :
bllow; gular stresses at other angles by making
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where

which leads to

Ky 9)[1 sin(—e—) sin(g—e—)]
O = amr °°S(z 2 )52
. (36
Oy = K I Cos(—e—)[l + sin(—q)sm(—z—)] (A2.38)
W \2mr 2 2

K (8. Q}
*rxy=—L—2_”_r cos( 2)sm( 3

is equivalent to Eq. (A2.28),

ept that the latter is
assuming r>>a. Equation (A2.38) excep

i f polar coordinates. . . .
exprei::«:lstl:r;?; guglished the following stress function for an array of collinear cr

in a plate in biaxial tension (Fig 2.21):

(A2.39)

Z(2)=

e
and 2W is the spacing between the crack cel'?ters.1 ”gl(:n
i " i i used this solu
stress intensity for this case is given in Eq. (2.45)'i early lmv.t:lsluf%:it;rzv e

i i cracked tensile panel w1 th. '
il it 1 additional configurations, including a

in [9] published stress functions for severa ons, o
pair olgzgz:l[( c];ening forces located a distance X from the crack center (Fig )

where a is the half crack length

Pa (A2.40)

p(z—X)z

Z(2)=

where P is the applied force. When there are matching forces
stress function can be obtained by superposition:

at X, the appropriate
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2Pa /1 —(X/a)?
Z(z) = ,
(2) 22 - x5\ 1@/ 2? (A2.41)

In each case, the stress function can be expressed in the form of Eq. (A2.37) and the near
tip stresses are given by Eq. (A2.38). This is not surprising, since all of the above cases
are pure Mode I and the Williams analysis showed that the inverse square root singularity
is universal.

For plane strain conditions, the in-plane displacements are related to the Westergaard
stress function as follows:

u, = 51;[(1—2V)Re2—yImZ]

(A2.42)

u". =

ﬁ[Z(l - v)ImZ- yRe Z]

For the plate in Fig. A2.2, the crack opening displacement is given by

1= _ 2(1 - 2 _ — 2
2u, = TVImZ = %Imz = ﬂl;l\/f -x' (A243a)

assuming plane strain, and

40
2u, = = a’ - x* (A2.43b)

for plane stress. Eq. (A2.43) predicts that a through crack forms an elliptical opening pro-

- file when subjected to tensile loading.

The near-tip displacements can be obtained by inserting Eq. (A2.37) into Eq.

(A2.42):
U, = L{L I cos(ﬁ) K—1+ 23in2(2)
2u\2rm 2 2

(A2.44)
K : 1
uy, = =L L sm(g) K+1- 2cosz(g)
2u\2rm 2 2]
forr << a, where
K=3-4vy for plane strain
and , (A2.45)
3-v
k=——o for plane stress

1+v
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Although the original Westergaard approach correctly describes the singular Mode 1
stresses in certain configurations, it is not sufficiently general to apply to all Mode 1
problems; this shortcoming has prompted various modifications to the Westergaard stress
function. Irwin [36] noted that photoelastic fringe patterns observed by Wells and Post
[40] on center cracked panels did not match the shear strain contours predicted by the
Westergaard solution. Irwin achieved good agreement between theory and experiment by
subtracting a uniform horizontal stress:

O =ReZ—- yImZ' =0 pxx (A2.46)

where O,xx depends on the remote stress. The other two stress components remain the
same as in Eq. (A2.31). Subsequent analyses have revealed that when a center cracked
panel is loaded in uniaxial tension, a {ransverse compressive stress develops in the plate.
Thus Irwin’s modification to the Westergaard solution has a physical basis in the case of
a center cracked panel4. Equation (A2.46) has been used to interpret photoelastic fringe
patterns in a variety of configurations.

Sih [37] provided a theoretical basis for the Irwin modification. A stress function
for Mode I must lead to zero shear stress on the crack plane. Sih showed that the
Westergaard function was more restrictive than it needed to be, and was thus unable to ac-
count for all situations. Sih generalized the Westergaard approach by applying a complex
potential formulation for the Alry stress function [41]. He imposed the condition Txy =0
at y=0, and showed that the stresses could be expressed in terms of a new function f{z):

Oy = 2Re ¢’ (z)-2yIm¢"(2)— A

Oyy = 2Re ¢ (z)+2yIm¢” (2)+A (A2.47)

Ty = 2yRe ¢"(2)

where A is a real constant. Equation (A2.47) is equivalent to the Trwin modification of
the Westergaard approach if

2¢' (2) =Z(2)— A (A2.48)
Substituting Eq. (A2.48) into Eq. (A2.47) gives
0, =ReZ- ylmZ -2A

Oyy = ReZ+ylmZ (A2.49)

 ——

4Recall that the stress functions in Egs. (2.32) and (2.39) are strictly valid only for biaxial loading. Although
this restriction was not imposed in Westergaard's original work, a transverse tensile stress is necessary 10
order to cancel with -Gpxx- However, the transverse Stresses, whether compressive or tensile, do not affe‘}t
the singular term; thus the stress intensity factor is the same for uniaxial and biaxial tensile loading and i
given by Eq. (A2.36).
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Txy = _yRCZ

Comparing Eq. (A2.49) wi

: 5 =4 AAZ ith Eqs. (A2.31 L ;

Irwin modifications are equivalercllt arEd 2A=L_:nd (A2.46), it is obvious that the Sih and
XX

Sanford |39| ShOWCd tllat the I.[ Wlll—Slll appI()aC]l 1S Sllll too restrictive a]ld lle rO-
l l . . l ] f .
p ose Iep aculg W1 a COInp €Xx tunction 1’(2) ) ’ p

2¢'(2) = Z(z) - n(2)

(A2.50)
Ihe modified stresses are given by
Oy =ReZ-yImZ +yImn —2Ren
Oyy=ReZ+yImZ +yImn (A2.51)

Tyy =—YReZ'+yRen' +Imn

Equation (A2.51) re
. presents the most general f
When 1(z)= orm of Westergaard-type st :
Eq (Ag(si ) trze éeal constant ff)r'all z, Eq. (A2.51) reduces to the Irwin?,gih aress functlor}s,
Th‘ p luces to the original Westergaard solution when 7)(z) = 0 f pproach, while
e function 77 can be represented as a polynomial of the form oralle

M
n@w= Ya,"

Combining Egs. (A2.37 '
e -37), (A2.50), and (A2.52) and defining the origin at the crack tip

K M
2¢' = )i _ o m/2
N2z mzo m? (A2.53)

® Bich:i . .
ich is consistent with the Williams [11,35] asymptotic expansion

A2,
4 ELLIPTICAL INTEGRAL OF THE SECOND KIND

SOhds | 10,42] lllV()lveS an elliptic illteglal Of the SCCOIld k.i l'ld

"1y 2 _ 2
¥= | \/1_1 )
0 c? sin” ¢d¢ (A2.54)



Appendix 2
116
ipti i . Series
here 2¢ and 2a are the major and minor axes of the elliptical flaw, respectively. Seri
where 2c a .
expansion of Eq. (A2.54) gives
2
% 2
n|,_1c-d’ SolE N el 1 (A2.55)
Rmg I TR

i-ellipi in the published lit-
Most stress intensity solutions for elliptical and seml-elhplc.alhcrack;el1:1 t;miimated -
er:tsure are written in terms of a flaw shape parameter, O, which can P

1.65
a (A2.56)
o 2 - & 64 T
o=Y 1+1.4 (c)

3. ELASTIC-PLASTIC FRACTURE
MECHANICS

Linear elastic fracture mechanics (LEFM) is valid only as long as nonlinear material
deformation is confined to a small region surrounding the crack tip. In many materials, it
is virtually impossible to characterize the fracture behavior with LEFM, and an alternative
fracture mechanics model is required.

Elastic-plastic fracture mechanics applies to materials that exhibit time-independent,
nonlinear behavior (i.e., plastic deformation). Two elastic-plastic parameters are
introduced in this chapter: the crack tip opening displacement (CTOD) and the J contour
integral. Both parameters describe crack tip conditions in elastic-plastic materials, and
each can be used as a fracture criterion. Critical values of CTOD or J give nearly size-
independent measures of fracture toughness, even for relatively large amounts of crack tip
plasticity. There are limits to the applicability of J and CTOD(Sections 3.5 & 3.6), but
these limits are much less restrictive than the validity requirements of LEFM.

3.1 CRACK TIP OPENING DISPLACEMENT

When Wells [1] attempted to measure K, values in a number of structural steels, he
found that these materials were too tough to be characterized by LEFM. This discovery
brought both good news and bad news: high toughness is obviously desirable to
designers and fabricators, but Wells’ experiments indicated that existing fracture
mechanics theory was not applicable to an important class of materials. While ex-
amining fractured test specimens, Wells noticed that the crack faces had moved apart prior
to fracture; plastic deformation blunted an initially sharp crack, as illustrated in Fig. 3.1.
The degree of crack blunting increased in proportior to the toughness of the material.
This observation led Wells to propose the opening at the crack tip as a measure of fracture
toughness. Today, this parameter is known as the crack tip opening displacement
(CTOD).

In his original paper, Wells [1] performed an approximate analysis that related
CTOD to the stress intensity factor in the limit of small scale yielding. Consider a crack
with a small plastic zone, as illustrated in Fig. 3.2. Irwin [2] showed that crack tip
plasticity makes the crack behave as if it were slightly longer. Thus, we can estimate

CTOD by solving for the displacement at the physical crack tip, assuming an effective
crack length of a+ry. From Table 2.2, the displacement ry behind the effective crack tip

Is given by
u, = l(--*-—IK ¥ (3.1)
Y7 ou THWog '

and the Irwin plastic zone correction for plane stress is
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