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models can also be obtained solely on the basis of the measured effect of size on
On-

The size effect law in Equation 12.2.11 has also been shown to describe well
the existing test data on the size effect in various brittle failures of concrete
structures, in particular; (1) the diagonal shear failure of reinforced concrete
beams (unprestressed or prestressed, without or with stirrups), (2) the torsional
failure of concrete beams, (3) the punching shear failure of reinforced concrete
slabs, (4) the pull-out failure of steel bars embedded in concrete, and (5) the ring
and beam failures of plain concrete pipes (BaZant and Kim, 1984; BaZant and
Cao, 19864, b; and 1987; Bazant and Prat, 1988b; BazZant and Sener, 1987, 1988;
Bazant and Kazemi, 1988, 1989). Since, in contrast to fracture specimens,
concrete structures have no notches, these applications rest on two additonal
hypotheses, which are normally correct for concrete structures: (1) the failure
(maximum load) does not occur at crack initiation but only after a relatively long
crack or crack band has developed; and (2) the shape of this crack or crack band
is about the same for structures of different sizes.

It may also be noted that describing the size effect in (unnotched) structures
by Equation 12.2.11 is in conflict with the classical Weibull statistical theory of
size effect. However, this theory needs to be made nonlocal (cf. Sec. 13.10), and
then this classical theory is found to apply only asymptotically to very small
structures, while for large structures there is a transition to the LEFM size effect,
similar to Equation 12.2.11 (BaZant and Xi, 1989).

Problems

12.2.1 Let 0, = F(8) = given descending function of opening & of the equivalent
elastic crack shown in Figure 12.9b. Formulate the condition that the resultant
of the equivalent elastic stresses o, over length r, (Fig. 12:9b) be equal to the
resultant of stresses o, = F(8) over length [, (Fig. 12.9b). (From this
condition, one can estimate the ratio of lsto E'G;/f2.)

12.2.2 Rearrange Equation 12.2.11 algebraically so that Bf, and D, can be
obtained from oy data by linear regression (Bazant, 1984).

12.3 CRACK STABILITY CRITERION AND R CURVE

The propagation of a crack is a problem of equilibrium and stability governed by
the same laws as those for inelastic structures in general. This section will discuss
the criterion of stability of a crack and explain a simple approach to handle in an
equivalent elastic manner the nonlinearity of fracture caused by the existence of a
nonlinear zone at the crack tip.

R Curve and Fracture Equilibrium Condition

After a crack starts from a smooth surface or a notch, the size of the fracture
process grows as the crack advances. The consequence is that the energy release
rate R required for crack propagation (also called the crack resistance to
propagation) increases and may be considered to be a function of the distance ¢
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of the advance of the tip of the equivalent elastic crack (c=a—a, where
a = current crack length and a,=initial crack length or notch length). If the
function R(c) is known, the crack propagation may be approximately analyzed by
methods of linear elastic fracture mechanics, in which constant Gy is replaced by
the function R(c), called the R curve (Fig. 12.12a).

To some extent, the function R(c) may be approximately considered to be a
fixed material property, as proposed by Irwin (1960) and Krafft, Sullivan, and
Boyle (1961). It has been found, however, that the shape of the R curve depends
considerably on the shape of the specimen or structure. The R curve may be
assumed to be unique only for a narrow range of specimen or structure
geometries. Thus, it is necessary to determine the R curve for the given geometry
prior to fracture analysis. A simple method to do that, utilizing the size effect law,
has been proposed by BaZant, Kim, and Pfeiffer (1986) and refined by Bazant
and Kazemi (1988), and by Bazant, Gettu, and Kazemi (1989). In the analysis
that follows we will assume that the R curve for the given geometry is known.

The energy that must be supplied to an elastic structure under isothermal
conditions in order to produce a crack of length a is

97=f bR(c') dc' + I(a) c=a—a, (12.3.1)
0

where b = thickness of the structure and a, = initial crack length or notch length.
& represents the Helmholtz free energy and IT is the total potential energy of the
structure due to formation of a crack of length ¢ = a — a,. An equlibrium state of
fracture occurs when 8% =0, in which case neither energy needs to be supplied,
nor energy is released if the crack length changes from a to a + 8a. Since
0% = (3%/da)da=0 and (from Eq. 12.3.1) 98%/8a=bR(c) + dI1/3a = 0

Figure 12.12 Curves of crack resistance to crack propagation (R curves) and of energy
release rate: (a) ¢’ >0; (b) 9'<0; (c) R =const. = Gy; (d) critical stress for structures of
different sizes. (After BaZant and Cedolin, 1984.)

-
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(where 9I1/3a = 31/ 3c), it follows that a growing crack is in equilibrium if

%(a) =R(c) with 4(a) = — HT(a) c=a—a, (12.3.2)
Here (a)=energy release rate of the structure when the crack length is aq,
IT'(a) = 9I1(a)/3a. In the special case of linear elastic fracture mechanics we have
R(c) = Gy = constant, and then Equation 12.3.2 becomes —0Il/da = bG;, as
already indicated in Equation 12.1.1, where 9= energy release rate of structure.

If 0<%<R(c), the crack can neither grow nor shorten, and so it is in
equilibrium as a stationary crack. '

If =0, the crack can start closing near the tip, as the crack tip opening
displacement 6. is zero if §=0 or K;=0 (see Egs. 12.1.5 and 12.2.4); this case
represents the equilibrium state of crack shortening (6a <0) because 6% =
(0%/3a)da = —b%da = 0, that is, the energy required for crack closing is zero [as
if R(c)=0].

Under isentropic conditions, the only the change needed to be made in the
foregoing equations is to replace % with total energy of the structure, 9.
However, the values of R(c) and Gy for isentropic conditions are different (larger)
than for isothermal conditions.

Fracture Stability Criterion and Critical State

If the fracture equilibrium state is stable, the crack cannot propagate by itself,
that is, without any change of loading (applied force or prescribed displacement).
If the fracture equilibrium state is unstable, the crack will propagate by itself,
without any change of applied load or boundary displacement. The fracture
equilibrium state is stable if the second variation 6>% is positive (same as in Sec.
10.1). Since 6% = 3(8°%/3a%)6a® and PF/a> = b(dR/dc) + 8°T1/3a?, we con-
clude that the equilibrium state of a growing crack satisfying Equation 12.3.2 is

Stable if R'(c)—¥9'(a)>0
Critical if R'(c)—%9(a)=0 [if ¥=R(c)] (12.3.3)
Unstable if R'(c)—¥9(a)<0

where R'(c) = dR(c)/dc and 9'(a) = 39/3a = —(1/b)5°T1(a)/ 3a>.

If 0<9<R(c), the crack is stable regardless of the sign of R'(c) — 9'(a)
because it can neither extend nor shorten. )

If =0 (or K;=0), we have an equilibrium state of crack shortening
(0a <0). It is

Stable if 9 (a)<0
Critical if G@)=0 (if 9=0) (12.3.4)
Unstable if G (a)>0

If the equilibrium state of crack growth (or crack shortening) is unstable, the
crack starts to propagate (or shorten) dynamically, and inertia forces must then
be taken into account.
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In the special case of linear elastic fracture mechanics, for which R(c)=G; =
constant, we have dR(c)/dc =0. In that case, conditions 12.3.3 for stability of a
growing crack become identical to conditions 12.3.4.

For a structure with a single load P (or a system of loads with a single
parameter P), II is proportional to P2 According to Equations 12.2.8,
%(a) = P7g(a)/EbD. For most structures and fracture specimens, g(a), and thus
also %(a), are increasing functions. The plots of functions %(a) for a succession of
increasing values P = P, Py, P, ... then look as shown by the dashed curve in
Figure 12.12a (BaZant and Cedolin, 1984). According to Equation 12.3.2, the
equilibrium states of crack propagation for various load values are the intersec-
tions of these dashed curves with the R curve. According to Equations 12.3.3,
these equilibrium states are stable if R'(c) > %'(a) at the intersection point (Fig.
12.12a). As the load increases and the crack grows, the difference between the
slopes R'(c) and ¥'(a) gradually diminishes until, at a certain point, the slopes
become equal (i.e. the curves become tangent); this is then the critical state, at
which the load is maximum and the structure fails if the load is controlled.
Beyond this point the crack extension is, under load control, unstable and occurs
dynamically; the excess energy %(a) — R(c) goes into kinetic energy. The portion
of the R curve before the critical state represents a stable crack growth (also
called the “slow crack growth,” to indicate the growth is not dynamic).

In the case that g'(a) <0 or %'(a) <0 (Fig. 12.12b), stability is guaranteed
because R'(c) >0. This case occurs for the double cantilever fracture specimen
with a relatively short crack and for a rectangular specimen with a small centric
crack loaded on the crack (as well as for specimens with chevron notches). For
most other geometries, though, 8'(@)>0or ¥ (a)>0.

In the case that R(c)= Gy = const. (Fig. 12.12c), stability under controlled
load requires that 9'(a) <0. So there can be no stable crack growth in linear
elastic fracture mechanics except when ¢'(a) <0. Conversely, if a stable growth is
observed and ¥'(a) >0, it means that the fracture law must be nonlinear.

Comparing structures that are geometrically similar (with similar notches) but
of different sizes, the curves of %(c) are of similar shape (Fig. 12.12d), while the
R curve remains the same. Consequently, the larger the structure, the larger is
the crack length ¢ at the maximum load (critical state under load control).

Determination of Geometry-Dependent R Curve from Size
Effect Law

The foregoing quasi-elastic analysis of equilibrium propagation and stability can
be carried out only if a realistic R curve is known. The R curve can be determined
experimentally, but that is quite demanding and fraught with possible am-
biguities. The main trouble, however, is that the experimentally measured R
curve is valid only for specimens of similar geometry. For different geometries,
the R curves are rather different (Bazant and Cedolin, 1984; Bazant, Kim, and
Pfeiffer, 1986). This fact narrows the applicability of R curves, despite the
attractive simplicity of this approach.

A different twist, however, has recently appeared, making the R curve
approach much more versatile (BaZant and Kazemi, 1988). It has been found that
the size effect law proposed by BaZant is much more broadly applicable than a

*
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single R curve. One and the same size effect law, based on thg same G, aqd cr
(Eq. 12.2.11) applies for specimens of very different geometries while their R
curves are very different (see fig. 8 in BaZant, Kim, and Pfeiffer, 1986). So the
point is how to determine the R curve from the size effect law.

Consider now that the maximum load P, has been measured for a set of
geometrically similar specimens of different sizes D. For each §ize one has
%(a) = P2g(a)/Eb*D, where function g(a) is the same for all sizes D (Egs.
12.2.8). On each curve 9(a), there is normally one and only one point g = a, that
represents the failure point (critical state). At this point, the 4(a) curve must be
tangent to the R curve. Consequently, the R curve is the envelope of the’famfly of
all the fracture equilibrium curves %(a) for different sizes, as shown in Figure
12.13.

To describe the envelope mathematically, we write the condition of equi-
librium fracture propagation f(c, D)= G(a)— R(c)=0 where a=a/D = o+
c/D. If we slightly change size D to D + 8D but keep the geometric shape (that
is, ap = const.), failure (max P) occurs at a slightly different crack length ¢ + dc.
Since f(c, D) must vanish both for D and D + 6D, we must .have of(c, D)/dD =
0. Geometrically, the condition 3f (c, D)/3D =0 together with f(c, D) = 0 means
that the R curve is the envelope of the family of fracture equilibrium curves
f(c, D) =0 for various D values (BaZant, Kim, and Pfeiffer, 1986). Because the
R(c) curve is a size-independent property, AR(c)/3D =0. Therefore, the
envelope condition is

9Y(a)
oD

0 (12.3.5)

We have P;=(oxbD/c,)’=(Bf,bD/c,)*/(1+ D/Dy) where (Bf.)*=
¢>E'G;/Dog(a,) (according to Eq. 12.2.15). If we substitute this into 4(a) =
P2g(a)/E'b*D (Eqs. 12.2.8), we obtain for the critical states

gle) (D
Ya)= Gf@ (D - D0> (12.3.6)

Substituting this into the condition for the envelope, 3%9(a)/8D =0 (Eq. 12.3.5),
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Figure 12.13 R curve as an envelope of fracture equilibrium curves. (After Bazant, Kim,
and Pfeiffer, 1986.)
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differentiating and noting that dw/dD = 9ay/3D + 3(c/D)/3D = —¢/D? =
—(a— a)/D (because a,=const. or day/3D =0 for geometrically similar
structures), we get

Dyg(«@)
(o — ap)g’ (@)
Furthermore, substituting this, along with the relations (¢ —ap)D =c and

Do =csg'(a0)/g(ay) (from Egq. 12.2.16), into Equation 12.3.6, and setting
%(a) = R(c), we obtain the following result (Bazant and Kazemi, 1988, 1989):

D + Dy = (12.3.7)

_ 8@ 5) ( _ 5)
R(c) Gfg,(%) <cf o= a,+ D (12.3.8)

Equations 12.3.8 and 12.3.7 define the R curve parametrically. To calculate
the R curve, we must first obtain Gy and D, from the size effect law (Eq. 12.2.11).
Then we choose a series of a values. For each of them we evaluate D from
Equation 12.3.7, get ¢ = (a — a,)D, and calculate R from Equation 12.3.8. When
c is specified, then R needs to be solved by Newton iterations.

For different geometric shapes, functions g(«@) are different, and so Equation
12.3.8 gives different R curves for different geometries. The R curves obtained in
this manner, as well as the load-deflection diagrams calculated from such R
curves, have been found to be in good agreement with various data on concrete
and rocks, as well as aluminum alloys.

The foregoing derivation presumed the fracture process zone to remain
attached to the tip of the notch or initial crack. This ceases to be true after
passing the peak load; the fracture process zone becomes detached from the tip
and subsequently its size remains approximately constant. Therefore it dissipates
roughly the same amount of energy per unit crack extension. Consequently, the
values of 4 after the peak load must be kept constant and equal to the value that
R(c) attained at the peak load (BaZant, Gettu, and Kazemi, 1989).

Determination of the R curve from the size effect does not work in all
circumstances. It obviously fails when 8'(ap) =0, and does not work when
g' () <0 or g'(a) =0, because g'(a)>0 (Dy>0) was implied in the derivation
of Equation 12.3.8. It also fails when 8'(ap) or g'(a) is too small, because of the
scatter of test results. So this method must be limited to specimen geometries for

which g'(a9) >0 and g'(a)>0. This nevertheless comprises most practical
situations.

Crack Propagation Direction

Another stability problem in crack propagation is that of propagation direction.
Equilibrium modes of propagation can generally be found for many directions
emanating from the tip of a crack or notch but only one will occur in reality.
There exist several theories to decide the actual direction.

One theory assumes that the crack propagates in the direction normal to the
maximum principal stress. If the trajectory is smoothly curved, this implies the
Propagation to occur in such a direction that the crack tip field would be of mode
L. Another theory, due to Sih (1974), assumes the crack to propagate in the
direction of minimum strain energy density. A third theory (Wu, 1978) holds that
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Figure 12.14 (a) Shear crack propagation in brittle materials; (b) crack kinking.

the crack should propagate in the direction that maximizes the energy release rate
of the structure or specimen.

The last theory appears to be most reasonable since it in a certain sense
maximizes the internally produced entropy increment at a deviation from the

initial equilibrium state. The prediction of the last theory is often very close to

that of the maximum principal stress theory. However, cracks in concrete have
been observed to propagate under certain conditions in shear following the mode
IT direction (Bazant and Pfeiffer, 1987) or the mode III direction (Bazant, Prat,
and Tabbara, 1989). The possibility of shear crack propagation seems to be
typical of brittle materials with a coarse microstructure, in which the shear
fracture propagates as a band of tensile (mode 1) microcracks that are inclined
with regard to the direction of propagation (Fig. 12.14a) and later coalesce into a
continuous shear crack.

Kinking of Cracks and Three-Dimensional Instability of Front Edge

In some specimens with a symmetric (mode I) loading, the crack does not
propagate straight, along the symmetry line, but deviates to the side. This
phenomenon, called kinking, occurs, for example, in double cantilever specimens
(Fig. 12.14b). Rice and Cotterel (1980) analyzed the kinking as a stability
problem and showed that the straight-line propagation along the symmetry line is
stable only if there is a normal compressive stress o, of sufficient magnitude in the
propagation direction; see also Sumi, Nemat-Nasser, and Keer (1985).

Recently Rice also studied the condition when a propagating circular crack in
an axisymmetric situation ceases to be circular. He showed that the crack front
edge can develop a wavelike shape superimposed on the basic circular shape.

Problems

12.3.1 Supposing that R(c) = Gyc/(k +c) where k =constant, calculate the
critical crack length and the stability region for the cracks in Figure 12.5a—h
(Egs. 12.1.13-12.1.22).

12.3.2 Do the same for R(c) = G;(1 —e~%).

12.4 SNAPBACK INSTABILITY OF A CRACK AND
LIGAMENT TEARING

In the preceding section, we formulated the stability criterion in terms of crack
length increments that cause deviations from the fracture equilibrium state. From
Section 10.1 we recall, however, that in the case of a single load or displacement
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(or load parameter, displacement parameter) stability can be determined from
the load-displacement diagram P(x). With this aim in mind, we will now show
how to calculate this diagram. Then we will apply the procedure to the terminal
phase of the fracture process in which the distance between two crack tips or
between a crack tip and a surface, called the ligament, is being reduced to zero.

General Procedure for Load-Displacement Relation at
Growing Crack

Handbooks such as Tada, Paris, and Irwin (1985) or Murakami (1987) contain the
solutions of many elastic crack problems. In most cases, though, they list only the
stress intensity factor K; (or Ky, Kyy) as a function of the crack length a and the
load P, but the displacement is not given because it does not directly figure in
many analytical methods of elastic analysis. Yet, if the entire structure is elastic, u
can be calculated from K(a) quite easily as follows (Bazant, 1987b).

Consider a body with a single load P (or a single loading parameter P).
Instead of the actual process of equilibrium crack growth at ¥= R(c), the current
state with load P, load-point displacement u, and crack length a may be imagined
to be reached by two other loading processes at which mechanical equilibrium is
maintained [but the condition of ¢ = R(c) is violated].

Process I. Load P is applied first on an uncracked specimen (Fig. 12.15a) and
then, while P is kept constant, a crack grows from length 0 to length a (Fig.
12.15b), which causes additional displacement u;. The energy release rate is
9=Ki/E' (Eq. 12.1.8) where K;= Pk(a)/b\/D for two-dimensional similarity
(2D, Egs. 12.2.8) or K;= Pk(a)D~* for three-dimensional similarity (3D, Eqs.
12.2.9), and E' = E/(1 — v?) for plane strain, E' = E for plane stress and for 3D.
The energy dissipated by the crack tip is

For 2D:

W;=b f YD da = Pzg)—,(;() o(a)= fa[k(a/’)]2 da' (12.4.1a)
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Figure 12,15 (a, b, ¢) Two loading and cracking sequences leading to the same final state
of an elastic solid; strain energy and complementary strain energy for (d) linear and (e)
nonlinear elasticity.
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For axisymmetric or other 3D situations:

P2y(a)

= D%D da =
W; fp(a) 9D do 5D

Y(a) =J' p(a')[k(a")] da'(12.4.1b)
0

in which D da=da and p(«)D = perimeter of the crack front edge in three-

dimensional situations. For example, p(«) = 2w« for a circular crack of radius a

in a bar of diameter D.

The change of potential energy needed to produce the crack is A% = IT + W;
where I=U-W=U-[Pdu,=U— Pu; = potential-energy change without
regard to fracture, W =work of load, U =strain energy change (at constant
temperature), and A represents the Helmholtz free energy of the system (cf.
Eq. 12.5.1). Since there is no external energy input other than load P, we have
A% =0, from which

W, = Pu, — U (12.4.2)

(alternatively we could have written this relation directly on the basis of energy
conservation requirements). Now we notice that the expression U* =Pu; — U
coincides with the definition of the complementary strain energy (Fig. 12.15d).
Moreover, for constant load (dP =0), the complementary energy of the
structure-load system is Hf* =U*—W*=U* because W*= | usdP =0 (com-
plementary work of the load at dP = 0). So we conclude that

I =W, (12.4.3)

The total complementary energy of the cracked structure is [1* = ITg + IT} where
Iy = Iy (P) = complementary strain energy of the structure if there is no crack.

Process II. The crack of length a is imagined to be cut prior to loading (in an
unstressed body, Fig. 12.15c), and then the load is increased from 0 to P while
the crack length a is kept constant. Because the body is elastic, the principle of
conservation of energy must apply, and so the complementary energy at the end
of this process must be the same, that is, IT* = IT} +TI} where II§ = change
of complementary energy calculated for a body with no crack.

Process II has the advantage that we may apply Castigliano’s theorem to
calculate the displacements; u = 3I1*/3P. Therefore,
olly Al
oP * oP
in which u,(P) = 3I1; (P)/3P = displacement calculated for a body with no crack
(Fig. 12.15a), and u;(P)=0Il;(P) where u,(P) represents the additional
load-point displacement due to crack, which must be equal to the displacement
caused in process I by creating the entire crack at constant load P (Fig. 12.15b).
The additivity of the displacement due to crack, stated by Equation 12.4.4, is a
basic simple principle for calculating deformations of cracked elastic bodies.

According to u; = 3117 /3P, Equations 12.4.1 yields

For 2D:

u(P) =

= uo(P) + us(P) (12.4.4)

oI 2P
=7 _ = 4.
us 3P " E'B ¢(a) (12.4.5a)
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For axisymmetric or other 3D situations:

) _onf  2p ( 5
'=%p 5D ¥ (12.4.5b)

Now consider the actual loading process, in which the crack grows gradually
as the load is increased. During the actual crack growth (in contrast to processes I
and II) we must have %= R(c) or K;= KF(c) satisfied all the time; Kf(c)=
[E'R(c)]"? = critical stress intensity factor depending on the crack extension
¢ = @D — a, according to the R curve (which must be calculated in advance as we
showed in Sec. 12.3). Consequently, from Equations 12.2.8 and 12.2.9,

For 2D:
_bvD
k(a)

[

For axisymmetric or other 3D situations:

R(c)]u2 K{(c) (12.4.6a)

E!DS 1/2 3/2 R
P [g(a) R(c)] %) Ki'(c) (12.4.6b)
Analogous equations, in which K{ is replaced by KX or K&, apply to mode II or
mode III fracture.

Equations 12.4.5a, b and 12.4.6a, b describe the load-deflection curve P(u) at
advancing crack in a parametric way, with a as the parameter. For any value of a,
one may calculate P from Equations 12.4.6a, b and us from Equations 12.4.5a, b.
Adding uy(P), one obtains u.

A similar derivation can be made when the boundary conditions consist of a
specified remote stress o, instead of load P.

Snapback Instability at Crack Coalescence in Two Dimensions

To demonstrate stability analysis based on the foregoing procedure, consider a
periodic array of collinear cracks of length 2a and center-to-center spacing D in
an infinite space subjected at infinity to tensile stress ¢ normal to the cracks
(Ortiz, 1987; Horii, Hasegawa, and Nishino, 1987; Bazant, 1987b) (Fig. 12.16a).
This problem is of interest for micromechanics of the fracture process zone in
brittle heterogeneous materials, such as concrete or modern toughened ceramics.
According to Equation 12.1.19 (Tada, Paris, and Irwin, 1985) we have

1 oI 2K} 207 ma
—_ = (g—*—“ P
- 2 ot — D tan (12.4.7)

with E' = E/(1 —v?), for both crack tips combined. By integration, the strain
energy released by symmetric crack formation is

20%D?b ma
m=— 1 ( —> 4.
¢ K n ( cos D (12.4.8)

The relative displacement due to cracks, measured between two planes remote
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Figure 12.16 (a) Array of collinear cracks, (b, c,d) determination of snapback instability
and graphical construction of stress—displacement diagram.

from the crack plane, is (by Castigliano’s theorem)
oI 1 oIlf 40D ( o na)
= = — = — ni|{c -
“T3P "bD 80 nE’ °

where P = oDb = force per crack. Although linear elastic fracture mechanics does
not apply to macroscopic fracture of concrete or toughened ceramics, it may
probably be assumed to apply to microcracks, and so we may use R(c)=G; =
const. Setting 9= R(c), we also have

B Ele 1/2
7= <D tan (na/D)) Utst=ll)

Equations 12.4.9 and 12.4.10 define the relation o(us) in a parametric way,
with a as a parameter. We may assume the R curve in the form R(a)=
Gi[1-(1-a/c,)"] for a=<c,, and R(a) = G for a =c,, where Gy, ¢, and n are
material constants and c,, has the dimension of length (BaZant, Kim, and Pfeiffer,
1986). Then, if we choose various values of a, we can calculate the corresponding
values of o(a) and us(a). The resulting curve o(u;) is plotted in Figure 12.16b
(for n=2.8, c,,=0.1in.). An interesting property is that, after a maximum
displacement u;, this curve exhibits snapback.

The stress o, in reality, is not applied or controlled at infinity but at some
remote planes at distance L, parallel to the cracks. To judge stability one needs
the total displacement u(0)=u;(0)+ uo(o) where uy(o)=C,0, C,=L/E'=
relative displacements between these planes if no cracks existed. Based on this
relation, one may construct the u(o) diagram graphically by adding the abscissas
for the same value of o as shown in Figure 12.16b, ¢, d. Clearly, the resulting
diagram o(u) (Fig. 12.16d) also exhibits snapback.

Since the diagram o(u) is descending, the states of growing cracks cannot be
stable under load control. They can be stable only if displacement u is controlled,
but never after the snapback point. The stability condition is du/dP < 0 (see Sec.
10.1). The critical state is obtained for du/dP =0, which means drawing vertical
tangents as shown in Figure 12.16d. Stability (under displacement control) exists

(12.4.9)
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only .between the tanggnt points. Since u = u, + C,0, one finds that the state of
growing cracks under displacement control is
du

r
< ——
do Ce

Stable if

Critical i =t
ritical if do Ce (12.4.11)

Unstable if —>-C
do ¢

This stability condition is illustrated in Figure 12.16b where dashed straight lines
of slope —1/C, are drawn as tangents to the calculated us(0) diagram. There are
two tangent points A and B representing the critical states. Between these critical
states (segment AB) the growing crack is stable, and the remaining points on the
us(o) curve (branches DA and BE) are unstable. The shorter length L is, the
steeper is the slope —1/C,, which causes the stability region to increase.
However, no matter how steep this slope is, the critical state cannot be pushed
beyond point C with a vertical tangent.

Snapback Instability at Tearing of Circular Ligament

For micromechanics of the fracture process zone in concrete or toughened
cerf'imi.cs, a more realistic model for the terminal process of ligament tearing is
shrinking circular ligaments of spacing D, connecting two elastic half-spaces in
three dimensions. As stated in Equation 12.1.22, K;=31P(nr*)~"2 (Tada, Paris
and Irwin, 1985) where r = ligament radius and P = transverse force transmitteci
by one ligament. From this, — 3T} /or = Oll;/8a = 2rG=2mrK?/E' = P?/2E' >
where E’ = E/(1 - v?). By integration,

Inr = Lz (1 K) D
Ay P r—z—a (12.4.12)
where k = integration constant. By Castigliano’s second theorem,
= oIl; _P (1 I(‘)
' =%p "5 D (12.4.13)

Also, setting 9= R(c) = G; we obtain r = (P?/47E’'G;)", and Equation 12.4.13

then becomes
P [<4n:E'Gf>”3 K]

Uy = — PR
F T E P D

(12.4.14)

Constant k can be determined from some known state at finite r. Requiring
Equation 12.4.14 to pass through the snapback point obtained from a more
realistic model, Bazant (1987b) found x = 2.299.

The plot of Equation 12.4.14 is shown in Figure 12.17b as the lower dashed
curve. Obviously, Equation 12.4.14 represents snapback; and we could repeat a
similar discussion as before. Figure 12.17a, b also exhibits the solutions obtained
by Bazant (1987b) for the two idealized three-dimensional situations shown,
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Figure 12.17 Stress—displacement diagrams for (a) circular (penny-shaped) crack, (b)
circular ligament, (c) three-point bent beam. (After Bazant, 1987b.)

which model the evolution of fracture in the process zone from small circular
cracks to small circular ligaments.

With regard to the stress—displacement (or stress—strain) relation for the
fracture process zone, the foregoing results suggest that it should be considered to
possess a certain maximum displacement (or strain). Conceivably, though,
various other inelastic phenomena could spoil this picture; see the discussion in
Bazant (1987b).

General Condition for Snapback at Ligament Tearing

Does the snapback always take place in the terminal phase of fracture? It does
not. For example, using Srawley’s expression for K;, BaZant (1987b) used the
technique we just demonstrated to calculate the P(u;) diagram for a three-point
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bend fracture specimen; see Figure 12.17c¢; it exhibits no snapback instability. So
what is the property that causes snapback?

Let us consider the ligament size to be infinitely small compared to any
cross-section dimension of the structure. We assume the subsequent ligament
shapes to remain similar as the ligament shrinks. Let P and M be the internal
force of any direction and the internal moment about any axis transmitted across
the ligament (Fig. 12.18). (The special cases of P include a normal force or a shear
force, and of M a bending moment or a twisting moment.) According to
Saint-Venant’s principle, P or M can produce significant stresses and significant
strain energy density only in a three-dimensional region whose size (L, and L, in
Fig. 12.18) is of the same order of magnitude as the ligament size 2r. The strain
energy produced in this region by P or M is

N P2 PZ M2 M2

In* = = nm=—rkr=——F
LT 2EA Y T 2Eky, 2 2K Y T 2Eky?

(12.4.15)

where A = ksr® = cross-section area of the ligament, I = k¢r* = moment of inertia

of the cross section of the ligament, and ki, ks, . .., k¢=constants. The remote
displacement u, and rotation 6 associated with P and M, respectively, are
oy P _ oIl M

e A e 4.
TP T Ekyr oM  Ek,° (124.16)

The energy release rates due to P and M per unit circumference of the ligament
Ccross section are

1 811y ) 1 oILy 3M?
! k,r dr  2Eksk,r? % kgr Or  2Ek.kgr’ ( R
Setting % = G; or % = Gy, we have
2 1/3
For P: r= <L>
2Ek3k,G;
) (12.4.18)
3M 1/5
For M: r= (@)
2Ek 4ks Gy

Substituting this into Equations 12.4.16 we get, for very small ligament size r, the

Figure 12.18 Tearing of ligament joining two half-spaces or half-planes. (After BazZant,
1987b.)
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asymptotic approximations:

For P: v =g PP

For M: 0=c,M s (12.4.19)

where c;, ¢, = constants. Note that Equation 12.4.19 for P agrees with the
asymptotic form of Equation 12.4.14, which is u} = 4xG,P/E"* for P— 0.

From Equations 12.4.19 we conclude that if the ligament is loaded by a force,
the curve uy(P) must return to the origin (u; =P =0) as P—0 (r—0). This
implies that there must be snapback at some finite P value.

On the other hand, if the ligament is loaded by a moment, the curve 6(M)
tends to infinity as M — 0 (r— 0). So there can be no snapback.

For two-dimensional problems a similar asymptotic analysis is possible, but
only for the moment loading. We have I = k¢br> where b = thickness of the body,
and instead of Equations 12.4.15 to 12.4.17 we obtain

M? M2
I =5 = 35 (12.4.20)
*
P (12.4.21)
dM ~ Ek,br
* 2
g 22 M (12.4.22)

bar Ek.b*

Setting 4= G;, we have r = (M*/G;Ek,b*)'”, and substituting this into Equation
12.4.21 we get, for small r,
6 = c,M 1 (12.4.23)

So for moment loading in two dimensions there cannot be any snapback either.
For two-dimensional problems in which the ligament is loaded by a force, the
foregoing approach fails because, as it turns out, the curve u,(P) is not of a power
type as P— 0. For a sufficiently short ligament, the stress field must be the same
as that near a ligament joining two elastic half-planes. For that problem it is
known that K;=(P/b)(xr)~"> where P =normal (centric) force and r = half-
length of the ligament (Fig. 12.18). Therefore —O0Il;/or=b%=bK{E =
P?/sE'br, and by integration the total strain energy release is
" P? r
Iy = JrE'bln . (11.4.24)

where r, = integration constant. Furthermore,

*
oy _ P L F (12.4.25)
3P mE'b r

Us
Setting K; = K, = critical value of K|, we also get r = P?/nb*K3,, and substitution
into Equation 12.4.25 yields

2P P?

uy = (12.4.26)

- 1
7E'b " 7b?KFr,
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The curve u;(P) described by this equation is not of a power type, which explains
why the type of approach used in Equations 12.4.15 to 12.4.23 would fail.

The curve us(P) given by Equation 12.4.26 obviously exhibits a snapback
since, for P—0, limu; =0. The critical state is characterized by the condition
Ou;/dP =0. u, yields for the snapback instability the critical load P, .=
be\/:t_r()/7.389; max u, follows from Equation 12.4.26.

Note: Coalescence of adjacent circular voids in a plastic material is a related
stability problem. It is of interest for micromechanics of fracture propagation in
metals.

Alternative Calculation of Displacement from Compliance Variation

Instead of using Castigliano’s theorem and complementary energy, we can
alternatively calculate the load-point displacement u by integrating the changes of
compliance C. We again consider a process in which load P is applied first on an
uncracked structure and then, while P is kept constant, the crack grows from
length O to length a (see process I in Fig. 12.15a, b). According to Equation
12.1.1, the energy release rate during this process is, for 2D, 4= (3I1*/3a)/b =
b~'d[3C(a)P?)/da = (P?/2b) dC(a)/da (Eq. 12.1.12), and for axisymmetric or
other 3D situations = (0I1*/3a)/p(a)D. Substituting §= K?/E’, we obtain

For 2D:
dC(a) _ 2bKi(a) _ 2[k(x)]?

Ia PR bDE’ (12.4.27a)
For axisymmetric or other 3D situations:
ac 2 DK? 2 k(a)]?
(@) _2p()DK3(a) _ 2p(a)[k(a)] (12.427b)

da P°E' D?E’
where a = a/D. The initial value of C for a =0 is the compliance C, of the same

structure with no crack. Thus, setting da =D da and integrating Equations
12.4.1a, b at P = const. from C(0) = C, to C(a), we obtain

where
For 2D:
_2¢(a) I
C(a) = bE’ ¢(cv)—fo [k(a")] da (12.4.29a)
For axisymmetric or other 3D situations:
2y (a «
C,(a) =% w(@) =f0 p(a)[k(a")] da’ (12.4.29b)

Cs(a) represents the additional compliance due to the crack. Equation 12.4.28
proves that the compliance of the uncracked structure and the compliance due to
the crack are additive. According to Equation 12.4.28, the load-point displace-
ment is u(P) = uy(P) + u;(P) where u(P) = C,P and us(P) = C¢(a)P. Substituting
Equations 12.4.29a,b, we get for us the same expression as in Equations
12.4.5a, b.




