Mid-term Exam

Behavior of Concrete Members

Concrete Structural Engrg. Lab
Due: 2023. 5. 2

Problem 1 [50 points]

A tension member has a square cross section of 6 by 6 inches, and is reinforced with a single No. 8 bar. The member was cast as shown with a straight anchorage into a large mass of concrete.

(a) Estimate the average crack width at the midlength of the member for a load of 30 kips.
(b) Estimate the displacement at the loaded end relative to the concrete mass for a load of 30 kips.
(c) Estimate the length of embedment required into the concrete mass using the ASCE-ACI Comm. 408 recommendations. Assume the bar will be loaded to yield.
(d) Assume that the member is very long, and has a lap splice at midlength. Assume the bar is loaded to yield. Use the ASCE-ACI Comm. 408 recommendations to calculate the required splice length.

Problem 2 [50 points]

A RC compression member has a hexagonal cross section as shown.
$f_{c k}=5,000$ psi and $f_{y}=60 \mathrm{ksi}$. Concrete has lightweight aggregate.

(a) Compute the maximum spacing of No. 4 hoops such that the member will exhibit ductility following initial spalling.
(b) Derive the spacing of hoops required to ensure the longitudinal bars can yield.

Problem 3 [50 points]

(a) For the column cross section shown below, calculate the peak stress capacity of the confined core. Cylinders test at 4000 psi.
(b) Describe expected post-spalling behavior under axial load of a ten-foot long column with the cross section shown. Minimal calculation, if any.

Assume 3" Cover to tie.

Problem 4 [50 points]

Shown below are two concrete prism with embedded \#8 longitudinal bar bonded to the concrete. $\mathrm{f}_{\mathrm{c}}=4,000 \mathrm{psi}, \mathrm{f}_{\mathrm{y}}=60,000 \mathrm{psi}$
(a) Two jacks pull the \#8 bar, reacting against bearing plates that are epoxied to the prism. Calculate the bar slip from concrete at one end when tension of 30 kips is applied. Case " A "
(b) The bars are pulled with same 30 kip force, with no reaction on concrete. Calculate the slip from concrete at one end. Case " B "

$\bar{a}=\frac{f_{t} A_{c}}{\pi d_{b} h} \times 1.5$
$Z=0.5 /\left[\frac{3+0.002 f_{c}^{\prime}}{f_{c}^{\prime}-1000}+\frac{3}{4} \rho_{s} \sqrt{\frac{h}{3}}-0.002\right]$
$f_{c}=2 \frac{\epsilon}{\epsilon_{o}}\left(1-\frac{1}{2} \frac{\epsilon}{\epsilon_{o}}\right) f_{c}^{\prime}$
$\ell_{d b}=\frac{5500 A_{b}}{\phi k \sqrt{f_{c}^{\prime}}}$
$\sigma_{a}=\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right) / 3$
$\sigma=\left[\frac{\sum X_{i}^{2}-\left(\sum X_{i}\right)^{2 / n}}{(n-1)}\right]^{1 / 2}$
$K_{t r}=\frac{A_{t r} f_{y}}{1500 s}$
$\ell_{s}=\frac{1860}{\sqrt{f_{c}^{\prime}}} d_{b} \geqq 20 d_{b}$
$\rho_{0}=0.85 \beta_{1} \frac{f_{c}}{f_{y}} \frac{87000}{87000+f_{y}}$
$\rho_{s} \geqq 0.12 \frac{f_{c}^{\prime}}{f_{y}}$
$\tau_{a}=\frac{1}{\sqrt{15}}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]^{1 / 2} \quad f_{c}=f_{c \max }\left[1-z\left(\epsilon_{c}-\epsilon_{o} k\right)\right]$
$f_{c r}=f_{c}^{\prime}+t \sigma$
$\rho_{s}=0.45\left(\frac{A_{g}}{A_{c}}-1\right) \frac{f_{c}^{\prime}}{f_{y}}$
$A_{s h} \geqq 0.09 \operatorname{sh} f_{c}^{\prime} / f_{y}$

$K=K_{t r}+c$

bar \#	$\mathrm{d}_{\mathrm{b}}(\mathrm{in})$	$\mathrm{A}_{\mathrm{b}}\left(\mathrm{in}^{2}\right)$
3	$3 / 8$	0.11
4	$4 / 8$	0.20
5	$5 / 8$	0.31
6	$6 / 8$	0.44
7	$7 / 8$	0.60
8	1	0.79
9	1.12	1.00
11	1.44	1.56

Fig. Effectively confined concrete area as a function of tie spacing and core size for various square steel configurations

